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A robust and efficient method for Mendelian
randomization with hundreds of genetic variants

Stephen Burgess® 2*, Christopher N Foley', Elias Allara® 23, James R Staley?# & Joanna M.M. Howson @ 2>©

Mendelian randomization (MR) is an epidemiological technique that uses genetic variants to
distinguish correlation from causation in observational data. The reliability of a MR investi-
gation depends on the validity of the genetic variants as instrumental variables (IVs). We
develop the contamination mixture method, a method for MR with two modalities. First, it
identifies groups of genetic variants with similar causal estimates, which may represent
distinct mechanisms by which the risk factor influences the outcome. Second, it performs MR
robustly and efficiently in the presence of invalid IVs. Compared to other robust methods, it
has the lowest mean squared error across a range of realistic scenarios. The method iden-
tifies 11 variants associated with increased high-density lipoprotein-cholesterol, decreased
triglyceride levels, and decreased coronary heart disease risk that have the same directions of
associations with various blood cell traits, suggesting a shared mechanism linking lipids and
coronary heart disease risk mediated via platelet aggregation.
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istinguishing between correlation and causation is a

fundamentally important problem when trying to

understand disease mechanisms. Mendelian randomisa-
tion is an epidemiological approach to assess whether a risk factor
has a causal effect on an outcome based on observational datal>2.
The approach treats genetic variants as proxy measures for
clinical interventions on risk factors, using the variants analo-
gously to random assignment in a randomised controlled trial3.
As an example, genetic variants in the HMGCR gene region
predispose individuals to lower lifelong levels of low-density
lipoprotein (LDL) cholesterol, and are also associated with lower
risk of coronary heart disease (CHD)* HMGCR is the target of
statins, a class of LDL-cholesterol lowering drugs that are an
effective treatment for reducing CHD risk.

Mendelian randomisation relies on genetic variants satisfying
the assumptions of an instrumental variable (IV)>. A valid IV
must be associated with the risk factor of interest in a specific
way, such that it is not associated with confounders of the risk
factor-outcome association, nor does it affect the outcome
directly (but only potentially indirectly via its effect on the risk
factor of interest). An IV can be used to estimate the average
causal effect of the risk factor on the outcome®. If we assume that
the effect of the risk factor on the outcome is linear and homo-
geneous in the population, and similarly for the associations of
the IVs with the risk factor and outcome, the estimates from
different valid IVs should be similar to each other’. If estimates
differ substantially, then it is likely that not all the IVs are valid.

Genetic variants represent a fertile source of candidate IVs,
particularly for genes that have well-understood functions and
specific effects on risk factors8. Genetic variants are fixed at con-
ception, providing some immunity to reverse causation (as the
genetic variant must temporally precede the outcome) and con-
founding (as the genetic code cannot be influenced by con-
founding factors that act after conception). However, there are also
several reasons why genetic variants may not be valid IVs: such as
pleiotropy (that is, a variant affects risk factors on different causal
pathways), linkage disequilibrium with a variant that influences
another causal pathway, and population stratification?11.

For many complex risk factors, Mendelian randomisation
analyses may require multiple genetic variants to have enough
power to detect a causal effect. Several approaches for making
causal inferences with some invalid instruments have previously
been proposed. These include methods that assume that a
majority of the candidate instruments are valid IVs!2-14, and
those that assume a plurality of the candidate instruments are
valid IVs!>16, The plurality assumption means that out of all
groups of candidate instruments having the same asymptotic
causal estimate, the largest group is the group of valid IVs. A
similar assumption is made in outlier-removal methods, such as
MR-PRESSO, which sequentially removes candidate instruments
from the analysis based on a heterogeneity measure until all the
remaining variants have similar estimates!”. Other assumptions
have also been made: for example, the MR-Egger method assumes
that the distribution of direct effects of candidate instruments on
the outcome is independent from the distribution of associations
with the risk factor (referred to as the Instrument Strength
Independent of Direct Effect — InSIDE - assumption)!8.

Mendelian randomisation can exploit summarised data on
genetic associations obtained from genome-wide association
studies to link modifiable risk factors to disease outcomes!'®-20.
These summarised data, comprising beta-coefficients and stan-
dard errors from regression of the trait of interest (either risk
factor or outcome) on each genetic variant in turn, have been
made publicly available by several large consortia?!. Several of the
above methods use summarised data as inputs, and do not require
access to individual-level data.

We here introduce the contamination mixture method as a
method for obtaining valid causal inferences with some invalid
IVs. Compared to other approaches for robust instrumental
variable analysis, we believe our proposal has a number of
advantages in giving asymptotically consistent estimates under
the ‘plurality of valid instruments’ assumption, being fully like-
lihood-based, being computationally scalable to large numbers of
candidate instruments, and being implemented using sum-
marised genetic data.

In this paper, we examine the performance of the proposed
contamination mixture method in an extensive simulation study
with realistic parameters. We show that our method performs
well compared to previously proposed methods in terms of bias,
Type 1 error rate, and efficiency. We then illustrate the use of the
method in an example considering the causal effect of high-
density lipoprotein (HDL) cholesterol on CHD risk, demon-
strating a bimodal distribution of the variant-specific estimates, as
well as to consider the effect of LDL-cholesterol on CHD risk
(unimodal distribution), and of body mass index (BMI) on risk of
Type 2 diabetes (T2D). We investigate factors that identify a
group of genetic variants associated with HDL-cholesterol and
triglyceride levels having a strong protective effect on CHD risk,
showing that several of these variants have the same directions of
associations with various blood cell traits. We then discuss the
implications for identifying causal risk factors and mechanisms.

Results

Overview of the proposed contamination mixture method.
There are two broad contexts in which the contamination mix-
ture method can be used. First, under the assumption that there is
a single causal effect of the risk factor on the outcome, the
method can estimate this effect robustly and efficiently even when
some genetic variants are not valid IVs. Secondly, the method can
identify distinct subgroups of genetic variants having mutually
similar causal estimates. If multiple such groups are identified,
this suggests that there may be several causal mechanisms asso-
ciated with the same risk factor that affect the outcome to dif-
ferent degrees.

The contamination mixture method is implemented by
constructing a likelihood function based on the variant-specific
causal estimates. For each genetic variant, an estimate of the
causal effect can be obtained by dividing the genetic association
with the outcome by the genetic association with the risk factor;
thus the only inputs to the method are the genetic association
estimates (beta-coefficients and standard errors). If a genetic
variant is strongly associated with the risk factor, then its causal
estimate will be approximately normally distributed. If a genetic
variant is a valid instrument, then its causal estimate will be
normally distributed about the true value of the causal effect. If a
genetic variant is not a valid instrument, then its causal estimate
will be normally distributed about some other value. We assume
that the values estimated by invalid instruments are normally
distributed about zero with a large standard deviation. This
enables a likelihood function to be specified that is a product of
two-component mixture distributions, with one mixture distribu-
tion for each variant. The computational time for maximising this
likelihood directly is exponential in the number of genetic
variants. We use a profile likelihood approach to reduce the
computational complexity to be linear in the number of variants
(Methods).

Briefly, we consider different values of the causal effect in turn.
For each value, we calculate the contribution to the likelihood for
each genetic variant as a valid instrument and as an invalid
instrument. If the contribution to the likelihood as a valid
instrument is greater, then we take the variant’s contribution as a
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valid instrument; if less, then its contribution is taken as an
invalid instrument. This gives us the configuration of valid and
invalid instruments that maximises the likelihood for the given
value of the causal effect. This is a profile likelihood, a one-
dimensional function of the causal effect. The point estimate is
then taken as the value of the causal effect that maximises the
profile likelihood. A 95% confidence interval is constructed by
taking the set of values of the causal effect for which twice the
difference between the log-likelihood calculated at the value and
at the maximum is less than the 95th percentile of a y?
distribution with one degree of freedom. We note that the
confidence interval from this approach is not constrained to be
symmetric or even a single range of values. A confidence interval
consisting of multiple disjoint ranges would occur if there were
multiple groups of genetic variants having estimates that are
mutually consistent within the group, but different between the
groups.

Comparison with previous methods. To compare the perfor-
mance of the contamination mixture method against other robust
methods for Mendelian randomisation, we performed a simula-
tion study with a broad range of realistic scenarios. We consider
the first context, in which there is a single causal effect of the risk
factor on the outcome, to enable comparison with other methods.
We simulated data in a two-sample setting (that is, the genetic
associations with the risk factor and with the outcome are esti-
mated in separate samples of individuals) under 4 scenarios: (1)
all genetic variants are valid IVs, (2) invalid IVs have balanced
pleiotropic direct effects on the outcome, (3) invalid IVs have
directional pleiotropic direct effects on the outcome, and (4)
invalid IVs have directional pleiotropic effects on the outcome via
a confounder. In the first three scenarios, the InSIDE assumption
is satisfied, while in the fourth it is not. We took 100 genetic
variants as candidate instruments, with the number of invalid IVs
in Scenarios 2-4 being 20, 40, or 60. We performed several
methods: the standard inverse-variance weighted (IVW) method
that assumes all genetic variants are valid IVs?2, a weighted
median method that assumes that a majority of genetic variants
are valid IVs!4, the MR-Egger method!8, a weighted mode-based
estimation method that assumes a plurality of genetic variants are
valid 1Vs!6, MR-PRESSO!7, and the proposed contamination
mixture method. In all, 10,000 simulated datasets were analysed
for each scenario (Methods).

Table 1 shows that when all variants are valid IVs, all methods
give unbiased estimates. The most efficient robust method, judged
by standard deviation of the causal estimates and empirical power
to detect a true effect, is the MR-PRESSO method. This method is
similar in efficiency to the IVW method, which is optimally
efficient with all valid TVs23, but biased when one or more genetic
variants are invalid IVs. The contamination mixture and
weighted median methods are slightly less efficient, while the
mode-based method and MR-Egger methods are considerably
less efficient. Mean estimates are attenuated towards the null in all
methods due to weak instrument bias?4; attenuation was more
severe in the MR-Egger and mode-based methods (Table 1). Type
1 error rates for the contamination mixture method were no
different to the expected 5% level than expected due to chance in
this scenario and in a range of additional scenarios with all
variants being valid IVs (Supplementary Table 1). This provides
evidence for the validity of the contamination mixture method.

Table 2 shows that no one method outperforms others in every
invalid variant scenario. The MR-Egger method performs well in
terms of bias under the null and Type 1 error rate in Scenarios 2
and 3, but has the lowest power to detect a positive effect in these
scenarios, and is the most biased method in Scenario 4. The IVW

Table 1 Comparison of methods when all genetic variants
are valid instruments.

Scenario 1: all instruments valid

Method Mean SD Mean SE Power
Null causal effect: 8 = 0
Inverse-variance weighted 0.000 0.022 0.023 4.2
MR-Egger 0.001 0.061 0.062 4.4
Weighted median 0.000 0.028 0.033 2.1
MR-PRESSO —0.000 0.022 0.022 5.1
Weighted mode-based 0.001 0.061 0.199 03
Contamination mixture 0.000 0.028 - 49
Positive causal effect: § =+40.1
Inverse-variance weighted 0.094 0.023 0.024 98.1
MR-Egger 0.063 0.064 0.066 16.1
Weighted median 0.091 0.030 0.035 78.8
MR-PRESSO 0.094 0.024 0.023 98.0
Weighted mode-based 0.082 0.051 0.143 15.5
estimate
Contamination mixture 0.096 0.029 - 91.0

MR-PRESSO Mendelian Randomization Pleiotropy RESidual Sum and Outlier method of Verbanck
et al.l”’

All methods tested gave unbiased causal estimates in the simulation scenario when there were
no invalid instruments. Mean, standard deviation (SD), mean standard error (mean SE) of
estimates and empirical power (%) in simulation study for Scenario 1 (all 100 variants valid
instruments)

method performs well in Scenario 2, as the random-effect model
is able to capture balanced pleiotropic effects with mean zero.
However, it is unable to model other types of pleiotropy. The
weighted median method has lower bias than the IVW method
and reasonable power to detect a causal effect, but has high Type
1 error rate in Scenarios 3 and 4 even with only 20 invalid
instruments. The MR-PRESSO method is the most efficient at
detecting a causal effect, but also has high Type 1 error rate in
Scenarios 3 and 4 even with only 20 invalid instruments. The
weighted mode-based estimation method generally has low bias
and low Type 1 error rate inflation with up to 40 invalid
instruments, but also has low power to detect a causal effect. The
contamination mixture method generally has good properties,
with low bias and low Type 1 error rate inflation for up to 40
invalid instruments, but much better power than the mode-based
estimation method to detect a causal effect. Performance with 60
invalid instruments is generally poor for all methods. While the
contamination mixture method has slightly inflated Type 1 error
rates in Scenario 2, robust methods are typically only used when
the standard method (that is, the IVW method) suggests a causal
effect. Hence this is unlikely to lead to additional false positive
findings in practice. Coverage with a positive effect is shown in
Supplementary Table 2; results followed a very similar pattern to
that for Type 1 error rate under the null.

The mean squared error of each method in scenarios with a
null causal effect is shown in Fig. 1. The contamination mixture
method clearly dominates other methods in terms of overall
performance according to this measure, particularly in scenarios
with 40 or 60 invalid instruments.

Unravelling the effect of HDL-cholesterol on CHD risk. To
consider the causal effect of HDL-cholesterol on CHD risk, we
took 86 uncorrelated genetic variants previously associated with
HDL-cholesterol at a genome-wide level of significance in the
Global Lipids Genetic Consortium (GLGC)2°. Associations with
HDL-cholesterol were estimated in the GLGC based on up to
188,577 individuals of European ancestry, and associations with
CHD risk from the CARDIoGRAMplusC4D consortium on up to
60,801 CHD cases and 123,504 controls predominantly of
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Table 2 Comparison of methods with some invalid instruments.
20 invalid variants 40 invalid variants 60 invalid variants
Method Mean SD Power Mean SD Power Mean SD Power
Null causal effect: =10
Scenario 2: balanced pleiotropy, InSIDE satisfied
Inverse-variance 0.000 0.043 5.1 —0.001 0.057 55 0.000 0.068 5.4
weighted
MR-Egger 0.002 0.120 5.4 0.000 0.155 5.0 0.001 0.186 5.0
Weighted median 0.000 0.034 43 —0.000 0.043 7.5 0.001 0.057 124
MR-PRESSO —0.000 0.030 7.8 —0.000 0.043 12.4 0.003 0.060 9.5
Weighted MBE —0.004 0.118 0.3 0.002 0.066 0.9 —0.001 0.161 1.8
Contamination mixture 0.000 0.033 6.6 0.000 0.043 9.1 0.000 0.066 15.1
Scenario 3: directional pleiotropy, InSIDE satisfied
Inverse-variance 0.133 0.031 96.6 0.266 0.038 100.0 0.400 0.044 100.0
weighted
MR-Egger 0.005 0.1m 53 0.010 0.135 54 0.015 0.148 59
Weighted median 0.050 0.033 26.6 0.129 0.044 88.3 0.274 0.071 99.9
MR-PRESSO 0.056 0.030 50.9 0.168 0.042 99.6 0.330 0.056 100.0
Weighted MBE 0.008 0.068 0.3 0.028 0.109 2.1 0.086 0.156 223
Contamination mixture 0.016 0.034 9.7 0.042 0.044 25.4 0.144 0173 60.9
Scenario 4: pleiotropy via confounder, InSIDE violated
Inverse-variance 0.118 0.040 85.6 0.213 0.041 99.6 0.289 0.040 100.0
weighted
MR-Egger 0.280 0.121 81.1 0.400 0.110 96.1 0.457 0.100 99.2
Weighted median 0.080 0.044 56.6 0.212 0.072 98.1 0.339 0.062 100.0
MR-PRESSO 0.051 0.038 44.8 0.155 0.051 96.2 0.260 0.051 99.9
Weighted MBE 0.028 0.300 0.7 0.137 0.403 15.9 0.259 1.589 33.6
Contamination mixture 0.010 0.035 91 0.034 0.059 20.2 0.159 0.159 523
Positive causal effect: 0 =+0.1
Scenario 2: balanced pleiotropy, InSIDE satisfied
Inverse-variance 0.094 0.044 58.2 0.095 0.058 38.4 0.095 0.069 28.2
weighted
MR-Egger 0.063 0.120 8.7 0.060 0.155 6.3 0.060 0.188 6.3
Weighted median 0.091 0.036 69.1 0.092 0.045 59.9 0.092 0.060 515
MR-PRESSO 0.095 0.033 89.0 0.095 0.044 73.7 0.098 0.066 58.2
Weighted MBE 0.088 0.254 15.7 0.084 0.112 16.2 0.090 0.315 17.3
Contamination mixture 0.097 0.036 82.7 0.098 0.047 70.8 0.101 0.074 56.9
Scenario 3: directional pleiotropy, InSIDE satisfied
Inverse-variance 0.228 0.032 100.0 0.362 0.039 100.0 0.495 0.045 100.0
weighted
MR-Egger 0.069 0.115 9.7 0.075 0.137 9.0 0.078 0.150 9.0
Weighted median 0.144 0.035 98.1 0.227 0.046 100.0 0.372 0.071 100.0
MR-PRESSO 0.156 0.032 100.0 0.278 0.046 100.0 0.440 0.058 100.0
Weighted MBE 0.090 0.096 25.0 0.132 0.233 44.3 0.189 0.247 69.1
Contamination mixture 0114 0.036 925 0.146 0.050 94.4 0.305 0.228 98.1
Scenario 4: pleiotropy via confounder, InSIDE violated
Inverse-variance 0.214 0.041 100.0 0.307 0.042 100.0 0.384 0.041 100.0
weighted
MR-Egger 0.360 0.123 91.8 0.482 0.1m 98.9 0.550 0.101 99.8
Weighted median 0.176 0.047 99.1 0.309 0.073 100.0 0.434 0.063 100.0
MR-PRESSO 0.149 0.042 99.0 0.256 0.054 100.0 0.361 0.051 100.0
Weighted MBE 0.102 0.487 8.4 0.225 0.401 22.5 0.453 1.416 37.8
Contamination mixture 0.109 0.040 884 0.140 0.070 86.4 0.301 0.165 91.5
No one method outperformed all others in every scenario, but the contamination mixture method had good overall performance across scenarios with up to 40 invalid instruments out of 100.
Performance with 60 invalid instruments was generally poor for all methods. Mean, standard deviation (SD) of estimates and empirical power (%) in simulation study for Scenarios 2, 3 and 4. MR-
PRESSO Mendelian Randomization Pleiotropy RESidual Sum and Outlier method of Verbanck et al.!”; MBE mode-based estimate of Hartwig et al.'6

European ancestry2® (Supplementary Table 3). Previous analyses
for HDL-cholesterol with these variants using the IVW method
indicated a protective causal effect, whereas analyses using robust
methods (in particular, weighted median and MR-Egger) suggest
that the true effect is null*’. A null effect has been observed in
most trials for CETP inhibitors that raise HDL-cholesterol?$2°. In
one trial a modest protective effect was observed3’, although this
may be ascribed to the LDL-cholesterol lowering effect of the
drug. As the genetic associations with HDL-cholesterol were

estimated in the same dataset in which they were discovered, they
may be over-estimated due to winner’s curse’!. However, such
bias is typically negligible when genetic variants are robustly
associated with the exposure, and genetic associations with the
outcome as obtained in an independent dataset.

The contamination mixture method gives a likelihood function
that is bimodal (Supplementary Fig. 1), with a point estimate
(representing the odds ratio for CHD per 1 standard deviation
increase in HDL-cholesterol) of 0.67 for the primary maximum
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Fig. 1 Comparison of the methods based on mean squared error criterion.
The mean squared error of the various methods is plotted in each scenario
with a null causal effect. The corresponding plot with a positive causal
effect was practically identical. The contamination mixture method has the
best overall performance according to this measure, particularly in
scenarios where 40 or 60 out of the 100 genetic variants were invalid
instruments. The vertical axis is plotted on a logarithmic scale.

and 0.93 for the secondary maximum and a 95% confidence
interval comprising two disjoint ranges from 0.59 to 0.77, and
from 0.88 to 0.96. Estimates are less than one, suggesting a
protective effect of HDL-cholesterol on CHD risk. The two
regions of the confidence interval suggests the presence of at least
two distinct mechanisms by which HDL-cholesterol affects CHD
risk, represented by different sets of variants, and the method is
uncertain which of the sets is larger. Visual inspection of the
scatter graph (Fig. 2) reveals there are several variants suggesting
a protective effect of HDL-cholesterol on CHD risk. The bimodal
structure of the data would not have been detected by a
heterogeneity test. In contrast, a similar analysis for LDL-
cholesterol using 75 genome-wide significant variants gives a
unimodal likelihood function with a clearly positive causal
estimate (Supplementary Fig. 2).

However, 43 of the 86 HDL-cholesterol associated genetic
variants are also associated with triglycerides at p<107>,
meaning that the associations with CHD risk may be driven by
a harmful effect of triglycerides rather than a protective effect of
HDL-cholesterol, as suggested in multivariable Mendelian
randomisation analyses®2. Still, it is worthwhile investigating
those variants that evidence the strong protective effect, to see if
there is any commonality between them that may suggest a causal
mechanism. We proceed to investigate whether there are any
traits that preferentially show associations with genetic variants in
this cluster as opposed to with variants not in this cluster, as this
may help us identify the mechanism driving the genetic
associations with lower CHD risk. We note that this investigation
is performed without a prior hypothesis, and so should be
regarded as an exploratory hypothesis-generating investigation.

We searched for associations of all 86 variants in PhenoScan-
ner’3, a database of summarised data from genome-wide
association studies, and found 3209 datasets for which at least
one genetic association was available. After restricting to traits for
which at least 6 out of the 86 variants were associated at p < 107,
99 traits remained. For each variant, we calculated the posterior

0.05
< ———
(2]
= ——
o ——
S 0.00 - 1 |
= o] ‘\#\77
E i :!f L ‘ —
S Al
k]
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(9]
(%]
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Association with HDL-cholesterol

Fig. 2 Scatter plot of genetic associations. Genetic associations with HDL-
cholesterol (standard deviation units) against genetic associations with
CHD risk (log odds ratios). These association estimates are the inputs for
the contamination mixture method. Error bars for genetic associations are
95% confidence intervals. Heavy black line is the causal estimate from the
contamination mixture method with the strongest signal, lighter black line is
the causal estimate from the secondary peak. The grey area is the 95%
confidence interval for the causal effect; this comprises two ranges as the
likelihood is bimodal.

probability of being a valid genetic variant given a causal effect of
0.67, the estimate from the contamination mixture method. Traits
were then ranked according to the mean posterior probability for
all variants associated with the trait (Methods, Supplementary
Fig. 3). The top ranked trait was platelet distribution width. The
next ranked traits were also blood cell traits (Supplementary
Table 4): mean corpuscular haemoglobin concentration, and red
cell distribution width. This suggests that these variants may be
linked to CHD risk relates through blood cell trait-related
mechanisms.

We investigated variants that were associated with increased
HDL-cholesterol, decreased CHD risk, and at least one of the
above blood cell traits (Supplementary Fig. 4). We found 11
genetic variants in 9 distinct gene regions (including those having
the largest posterior probability) with a distinct pattern of
associations: decreased triglycerides, decreased mean corpuscular
haemoglobin concentration, decreased platelet distribution width,
and increased red cell distribution width (Fig. 3). This cluster
includes a variant in the LPL locus. The similarity in the presence
and direction of associations with these traits further supports a
potential shared causal mechanism. In particular, the finding of
platelet distribution width suggests a link with platelet aggrega-
tion, a known risk factor for CHD that has previously been linked
to HDL-cholesterol®4. To further investigate evidence of a shared
causal mechanism, we performed multi-trait colocalization across
these traits for each of the gene regions3>. For 7 of the regions,
there was strong evidence of colocalization for HDL-cholesterol,
CHD risk, and at least one of the blood cell traits (Supplementary
Table 5). While the claim of a novel causal pathway based on
genetic epidemiology alone is premature, this analysis suggests
the presence of a mechanism relating lipids to CHD risk that
involves platelet aggregation. However, our investigation only
highlights these traits as associated with variants in the cluster
having a negative association with CHD risk. It does not give any
further indication of how the mechanism operates.

| (2020)11:376 | https://doi.org/10.1038/541467-019-14156-4 | www.nature.com/naturecommunications 5


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-019-14156-4

CHD MCHC PDW RCDW

—0.009 (0.004)

—0.011 (0.006)
—0.006 (0.004)
—0.010 (0.004)

—0.029 (0.015)
0.006 (0.004)

~0.009 (0.003)

rsid Nearest gene HDL-c TG LDL-c
rs4650994 Clorf220 —0.002 (0.003) —0.003 (0.004)
rs4846914 GALNT2 —0.004 (0.004)
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#Nearest gene is RP11-136012.2, but signal maps to the TRIBT gene.

PThis gene is adjacent to the APOA5-APOA4-APOC3-APOA1 cluster on chromosome11.

Fig. 3 Variants having same directions of associations with blood cell traits. Details of genetic variants, nearest gene, beta-coefficients (standard errors,
SE) for associations with HDL-cholesterol (HDL-c), triglycerides (TG), LDL-cholesterol (LDL-c), coronary heart disease (CHD) risk, mean corpuscular

haemoglobin concentration (MCHC), platelet distribution width (PDW), and red cell distribution width (RCDW) for 11 genetic variants in 9 distinct gene
regions having a distinct pattern of associations. All associations are orientated to the HDL-cholesterol increasing allele. Red indicates that the association
is positive; blue for negative. The brightness of the colouring corresponds to the p-value for the strength of association from a Z-test; brighter colours

correspond to lower p-values.

There are several potential reasons why multiple magnitudes
of causal effect may be evidenced in the data (Supplementary
Fig. 5). HDL-cholesterol is not a single entity. It could be that
different size categories of HDL particles influence CHD risk to
varying extents3®. Alternatively, it may be that there are multiple
mechanisms by which HDL-cholesterol influences CHD risk,
and different genetic variants act as proxies for distinct
mechanisms. The identified blood cell traits may act as
mediators on one or other of these pathways. Or it could be
that the traits are precursors of the risk factor, and some variants
influence the traits rather than HDL-cholesterol directly. To
assess this, we performed a mediation analysis in which we
adjusted for genetic associations with each of the blood cell traits
in turn using multivariable Mendelian randomisation3’. The
coefficient for the causal effect of HDL-cholesterol attenuated
substantially on adjustment for each of the traits (Supplementary
Table 6), and particularly on adjustment for mean corpuscular
haemoglobin concentration, suggesting that at least part of the
causal effect may be mediated via these blood cell traits. In
contrast, associations did not attenuate substantially on adjust-
ment for alternative cardiovascular risk factors (Supplementary
Table 6).

Body mass index and type 2 diabetes risk. As a further illus-
tration of the ability of this approach to identify biologically
relevant pathways, we conducted a similar analysis with BMI as
the risk factor and T2D as the outcome. We considered 97 genetic
variants previously demonstrated to be associated with body mass
index at a genome-wide level of significance38. Although the vast
majority of genetic variants indicated a harmful effect of BMI on
T2D risk, there was a small number of variants suggesting a
protective effect (Supplementary Fig. 6). We calculated the pos-
terior probability of having a mild protective effect on T2D risk
for all variants, and performed a similar hypothesis-free search of
traits in PhenoScanner. The trait that most strongly predicted
membership of this subgroup was birth weight. In total, 4 variants
were associated with birth weight at p < 107>, including 3 out of
the 6 genetic variants suggesting a protective effect of BMI on
T2D risk at p<0.05. The hypothesis that high birth weight is
protective of T2D (part of the wider Barker hypothesis®”) has
been previously evidenced in Mendelian randomisation ana-
lyses#0. Similarly, evidence from famines such as the Dutch
Hongerwinter has suggested that low birthweight and caloric
restriction in early childhood is associated with increased risk of

Type 2 diabetes*!. Our analysis provides further evidence that
birth weight is the key factor explaining the opposing effects of
BMI on T2D risk: having high BMI from birth appears to be
protective of T2D, whereas having high BMI later in life only
increases risk of T2D.

Discussion

In this paper, we have introduced a robust method for Mendelian
randomisation analysis referred to as the contamination mixture
method. Compared to other robust methods, the contamination
mixture method had the best all-round performance in a simu-
lation study — maintaining little bias and close to nominal Type 1
error rates under the null with up to 40% invalid genetic variants,
having reasonable power to detect a causal effect in all scenarios,
and having the lowest average mean squared error of all methods.
In a Mendelian randomisation analysis for HDL-cholesterol on
CHD risk, the method detected two separate groups of variants
suggesting distinct protective effects on CHD risk. A hypothesis-
free search of traits revealed that several variants in the group
with the stronger protective effect were associated with platelet
distribution width and two other blood cell traits, with consistent
directions of association across 11 variants in 9 gene regions. This
suggests that the apparent protective effect of these variants may
be driven by a shared mechanism, potentially relating to platelet
aggregation. This mechanism has some plausibility, as platelets
are implicated in atherosclerosis and thrombus formation. The
approach also prioritised birth weight as the primary predictor of
whether genetic variants that are associated with increased BMI
are associated with increased or decreased T2D risk. Overall, the
proposed method is able to make reliable causal inferences in
Mendelian randomisation investigations with some invalid
instruments, as well as highlighting when there are multiple
causal effects represented in the data that may be driven by dif-
ferent mechanisms.

Rather than attempting to model the distribution of the esti-
mates from invalid genetic variants, the contamination mixture
method proposes that these estimates come from a normal dis-
tribution centred at the origin with a wide standard deviation that
is pre-specified by the user. We experimented with alternative
methods that estimate this distribution. However, as the identity
of the invalid instruments is unknown, the performance of these
methods was worse than the approach presented here. The run-
time of our proposed method is low - on an Intel i7 2.70 GHz
processor, the contamination mixture method took 0.08 seconds
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to analyse one of the simulated datasets with 100 variants. In
comparison, the MR-PRESSO method took 120 seconds, and the
mode-based estimation method 81 seconds. The complexity of
the contamination mixture model is linear in the number of
genetic variants, so the benefit in computational time over other
methods would be even greater if more genetic variants were
included in the analysis. The previously proposed heterogeneity-
penalised method*2, on which the contamination mixture
method is based, would be prohibitively slow even with 30
genetic variants. A disadvantage of our proposed method is
sensitivity to the standard deviation parameter. In the example
of HDL-cholesterol and CHD risk, while the two distinct groups
of genetic variants were detected at some values of the standard
deviation parameter, at other values distinct groups were not
detected.

As genome-wide association studies become larger, the
number of genetic variants associated with different traits
increases, and it is increasingly unlikely that all these genetic
variants are valid instruments for the risk factor of interest. For
risk factors with dozens or even hundreds of associated variants,
a paradigm shift is required away from approaches that assume
the majority of genetic variants are valid instruments, and
towards methods that attempt to find genetic variants with
similar estimates that might represent a particular causal
mechanism. Heterogeneity in variant-specific estimates is
inevitable, but heterogeneity should be seen as an opportunity to
find causal mechanisms, rather than a barrier to Mendelian
randomisation investigations. In our example, we demonstrated
how a group of genetic variants having similar causal effects for
HDL-cholesterol on CHD risk are linked by their association
with platelet distribution width, suggesting a possible mechan-
ism linking lipids to CHD risk related to platelet aggregation.
While further research is needed to establish this mechanism,
the approach demonstrates the possibility of finding information
on causal mechanisms amongst heterogeneous data.

There are many reasons why multiple causal mechanisms may
exist between a risk factor and an outcome. It may be that the risk
factor is not a single entity, but a compound measurement
incorporating multiple risk factors with different causal effects. It
may be that the risk factor is a single entity, but there are different
ways to intervene on it, leading to different magnitudes of causal
effect. Alternatively, it may be that some variants do not affect the
risk factor directly, but rather affect a precursor of the risk factor.
When multiple causal effects are evidenced in the data, we would
not want to label one subset of genetic variants as valid and others
as invalid in an absolute sense. Validity of variants is relative to
the proposed value of the causal effect - different subsets of
variants will be valid for different values of the causal effect. Any
cluster of variants may indicate a causal mechanism linking the
risk factor to the outcome, even if it is not the largest cluster.

Identifying variables that associate with a cluster of variants
having similar causal estimates may help us identify mediators on
a particular causal mechanism, or it may help us identify a pre-
cursor of the nominal risk factor that is the true causal factor.
However, unless we have biological knowledge that a variable
identified from such a procedure is on a causal pathway from the
risk factor to the outcome, a formal mediation analysis would be
speculative. A further possibility is that the link with the variable
is coincidental. However, if multiple variants in the cluster are all
associated with the same variable with the same direction of
association, then a common mechanism is likely.

In conclusion, we have introduced a robust method for Men-
delian randomisation that outperforms other methods (including
MR-PRESSO) in terms of all-round performance, and can iden-
tify groups of variants having similar causal estimates, enabling
the identification of causal mechanisms.

Methods
Instrumental variable assumptions. A genetic variant is an instrumental variable
if:

it is associated with the risk factor of interest,

. it is not associated with any confounder of the risk factor-outcome
association, and

3. it is not associated with the outcome except potentially indirectly via the risk

factor.

N

We use the term ‘candidate instrumental variable’ to indicate a variable that is
treated as an instrumental variable, without prejudicing whether it satisfies the
instrumental variable assumptions or not.

We assume that the associations between the instrumental variable and risk
factor, and the instrumental variable and outcome are linear and homogeneous
between individuals with no effect modification, and the causal effect of the risk
factor on the outcome is linear*3. These assumptions are not necessary for the
instrumental variable estimate to be a valid test of the causal null hypothesis, but
they ensure that all valid instrumental variables estimate the same causal effect.

If summarised data are available representing the association of genetic variant j

with the risk factor (beta-coefficient [ng and standard error se(ﬁxj)), and the
association with the outcome (beta-coefficient Byj and standard error se([iyj)), then

the causal effect of the risk factor on the outcome (9}- can be estimated as:

0, = ﬁ 5 (1)
By
and its standard error se(éj) as:
oo se(By)
se(f)) = ——-. )
Bx;

We refer to éj as a variant-specific causal estimate. This formula for the standard
error only takes into account the uncertainty in the genetic association with the
outcome, but this is typically much greater than the uncertainty in the genetic
association with the risk factor (particularly if the recommendation to use only
genome-wide significant variants is followed), and does not tend to lead to
substantial Type 1 error inflation in practice??. In fact, accounting for this
uncertainty naively leads to a correlation between the estimated association with
the risk factor and the standard error of the variant-specific estimate — which can
have more serious consequences in practice than ignoring this source of
uncertainty*44°. Therefore, while we provide software code so that the user can
specify whether to use the simple first-order standard errors or second-order
standard errors from the delta method*®, we use the first-order standard errors in
our implementation of the method.

Estimation with multiple instrumental variables. If there are multiple instru-
mental variables, then a more precise estimate of the causal effect can be obtained
using information on all the instrumental variables. If individual-level data are
available, the two-stage least squares method is performed by regressing the risk
factor on the instrumental variables, and then regressing the outcome on fitted
values of the risk factor from the first stage regression. The same estimate can be
obtained by taking a weighted mean of the variant-specific causal estimates using
inverse variance weights, as in a meta-analysis*’. The inverse variance weighted
(IVW) estimate can be expressed as:

Zjﬁijse(ﬁyj)72

The IVW estimate can also be obtained by weighted regression using the following
model:

BYj =0 Bx; e, ~N(, ¢ZSS(BY]')2) 4)

Here, we include an additional term ¢, which is the residual standard error in the
regression model. In a fixed-effect analysis, this parameter is fixed to be one, but in
a random-effects analysis, we allow this term (which represents overdispersion of
the variance-specific causal estimates) to be estimated (although we do not allow it
to take values less than one, as underdispersion is implausible)*8:49,

The two-stage least squares method (and hence the fixed-effect IVW method) is
the most efficient unbiased combination of the variant-specific estimates?3.
However, it is only a consistent estimate of the causal effect if all the candidate
instrumental variables are valid. We introduce the contamination mixture method
as a robust method for instrumental variable analysis (a robust method is a method
that provides asymptotically consistent estimates under weaker assumptions that
all genetic variants being valid instruments).
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Contamination mixture method. Suppose we have ] genetic variants that are
candidate instrumental variables. We assume that the genetic variant is strongly
associated with the risk factor, so that its variant-specific estimate is normally
distributed (in practice, we suggest ensuring that each genetic variant is associated
with the risk factor at a genome-wide level of significance)V. If genetic variant j is a
valid instrumental variable, then the variant-specific estimate from that variant éj is
normally distributed about the true causal parameter 6 with standard deviation

equal to the standard error of the ratio estimate se(6,):

A A2 . . . . . . .
0, ~ N(0,se(6;)") if the jth genetic variant is a valid instrument. (5)

If the same variant is not a valid instrumental variable, then the ratio estimate from
that variant 6; is normally distributed about some other value 65; with standard

deviation equal to the standard error of the ratio estimate se(6;). We assume that
these 0, are normally distributed about zero with standard deviation y, such that
the distribution of 6 is:

éj ~ N(0,y* + se(éj)z) if the jth genetic variant is an invalid instrument.
(6)

We assume that the standard errors se(@j) are fixed and known. Our method makes
no attempt to model the distribution of the estimates from invalid instruments. We
simply propose a symmetric normal distribution of the estimates about the origin,
with the variance of the distribution comprising the proposed variability in the
estimands 6p; (which is y?) plus the uncertainty in the estimate about its
asymptotic value (which is the square of its standard error). Although it would be
possible to estimate the distribution of the invalid estimands, their distribution is
not the focus of the investigation. Our attempts to model their distribution resulted
in greater uncertainty in which variants were valid and invalid instruments, and
less reliable inferences overall.

If the variant-specific estimate is close to the proposed causal parameter 6, then
the likelihood corresponding to the genetic variant being a valid instrument will be
larger; if the variant-specific estimate is not close to the proposed causal parameter
0, then the likelihood corresponding to the genetic variant being a invalid
instrument will be larger.

We notate the model (that is, the configuration of valid and invalid
instruments) as a vector {, where (j: 1 when genetic variant j is valid, and (j: 0
otherwise. The likelihood function is then:

L(6,0) = H(JLW + (1 =)Ly ()
j

60,

=1|¢x —exp | — ~5 |+ ®)
1;_‘[ ! 27‘[56(9]-)2 2se(6;
~2
-
(=) e | ),

27(y? + se(d;

where the likelihood contribution from each genetic variant is Ly;; if genetic variant
j is valid and Lg; if genetic variant j is invalid. Making inferences using this
likelihood is not simple, as the parameter space for { grows exponentially with the
number of genetic variants, and there is no guarantee that the likelihood will be
unimodal, making it difficult to apply stochastic approaches to explore the
model space.

We proceed using a profile likelihood approach. If the causal estimate 6 is fixed,
then the optimal model { to maximise the likelihood is clear: we should take ;=1
if Ly;> Lg;and {j= 0 otherwise. We denote this model choice as ¢ ¢- This implies
we can easily calculate a profile likelihood L, (6, ¢ o) for any value of 6. We perform
inferences on 6 by calculating this profile likelihood at a range of values of 6. The
causal estimate 0, is taken as the value of 6 that maximises the profile likelihood,

P
and the confidence interval as the values of 8 such that:

2[log(L, (B, ¢y )) — log(L, (8. $p)1>1 005 ©

where x} o is the 95th percentile of a chi-squared distribution with 1 degree of
freedom. The confidence interval is based on Wilks’ likelihood ratio test, and is not
constrained to be symmetric or a single range of values. We note that Wilks’
likelihood ratio test is not guaranteed to hold as the number of genetic variants
tends towards infinity; as there is one nuisance parameter per genetic variant, and
inference for a profile likelihood breaks down as the number of parameters profiled
out tends to infinity>!. However, in practice the number of genetic variants is
limited, and no issues with inference were reported in the simulation study. The
profile likelihood is a continuous function of €: it is clearly a continuous function
for ranges of 6 when (4 does not vary, and elements ¢; only change their value when
the profile likelihood is the same for ;=0 and {;= 1.

To allow for excess heterogeneity in estimates of the true causal parameter
from variants judged to be valid IVs, we estimate an overdispersion parameter as

the residual standard error ¢ from weighted regression of the genetic
associations with the outcome on the genetic associations with the exposure
using the genetic variants judged to be valid at the causal estimate 917 as in the
inverse-variance weighted method. This is analogous to a random-effects model
for the IVW method®. We then replace y7 o< in the above formula with

max(1, (;52) X X2 o95- This ensures that variability in the variant-specific causal
estimates for the valid IVs beyond what is expected by chance alone results in
additional uncertainty in the pooled estimate. However, the point estimate is not
changed, nor do we re-evaluate which variants are valid or invalid when
overdispersion is present.

We strongly recommend performing a sensitivity analysis for the value of y. We
suggest taking the standard deviation of the ratio estimates based on all the genetic
variants multiplied by 1.5 as an initial starting point in considering different values
of this parameter. This value was taken in the applied example. This means that the
standard deviation of invalid estimands 6f; is guided by the variability of the
observed ratio estimates, but inflated as the valid instruments will have more
similar causal estimates. However, a sensitivity analysis for this parameter is
advised. In the applied example, the causal estimate, as well as whether the method
detected two separate groups of variants or not, was sensitive to the choice of this
parameter (Supplementary Table 7).

As an alternative approach, we considered joint maximisation of the likelihood
across both y and 6. We re-ran the simulation study for 1000 iterations per
invalid instrument scenario with a null causal effect, implementing the original
version of the method, and the proposed version jointly maximising the log-
likelihood with respect to ¥ and 6. Results are shown in Supplementary Table 8.
We see that the joint maximisation approach performs less well than the original
approach in terms of bias, efficiency, and Type 1 error rate (particularly in
Scenario 3). By checking some specific example datasets, we noted that the joint
maximisation version often selects a value of y that leads to a large group of
variants with less similar causal estimates being included in the analysis as valid
instruments. This compares with the original version, which excludes more
variants from the analysis in these cases, resulting in a lower likelihood, but more
robust inferences.

The value of y influences which genetic variants are judged to be valid and
invalid. Variants are less likely to be judged to be invalid if y is too large or too
small. If multimodality in the likelihood is detected for any value of y, then this can
be interpreted as evidence for the presence of multiple causal mechanisms. If the
causal estimate varies considerably for different values of v, this suggests that not
all genetic variants are valid instruments, and researchers are discouraged from
presenting any of these estimates as a single definitive causal estimate. Instead, we
encourage researchers to consider whether some variants should be removed from
the analysis for being pleiotropic, or to find clusters of variants with similar causal
estimates that may represent a coherent causal mechanism.

As stated previously, there are two broad contexts in which the
contamination mixture method can be used: to estimate a single causal effect in
the presence of invalid IV, or to identify distinct subgroups of genetic variants
having mutually similar causal estimates. The number of subgroups identified by
the method is not pre-determined by the analyst, nor is it estimated as a
parameter in the model. Rather, for each value of the causal effect, we determine
which genetic variants are more likely to be valid instruments, and which
invalid. A subgroup is observed when there is a maximum in the likelihood
function. This occurs when there are several valid instruments for that value of
the causal effect (and hence relatively strong evidence for that value of the causal
effect), and relatively less strong evidence for neighbouring values of the causal
effect, leading to a distinct peak in the likelihood function. Subgroups could not
easily be identified using a heterogeneity measure only, as such an approach
would typically downweight or remove from the analysis variants having
outlying causal estimates, without assessing whether the estimates from outlying
variants were mutually similar.

Simulation study. To compare the contamination mixture method with previously
developed methods for Mendelian randomisation, we perform a simulation study.
We consider four scenarios:

1. no pleiotropy - all genetic variants are valid instruments;
balanced pleiotropy — some genetic variants have direct (pleiotropic) effects
on the outcome, and these pleiotropic effects are equally likely to be positive
as negative;

3. directional pleiotropy - some genetic variants have direct (pleiotropic)
effects on the outcome, and these pleiotropic effects are simulated to be
positive;

4. pleiotropy via a confounder — some genetic variants have pleiotropic effects
on the outcome via a confounder. These pleiotropic effects are correlated
with the instrument strength.

In the first three scenarios, the Instrument Strength Independent of Direct
Effect (InSIDE) assumption!8 is satisfied; in Scenario 4, it is violated. This is the
assumption required for the MR-Egger method to provide consistent estimates.

We simulate data for a risk factor X, outcome Y, confounder U (assumed
unmeasured), and J genetic variants G;, j = 1, ..., J. Individuals are indexed by i.
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The data-generating model for the simulation study is as follows:
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Gj; ~ Binomial(2,0.3)independently for all j =1, ... ,J
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€ui» €xi» €y; ~N (0, 1)independently
¥; ~ Uniform (0.03,0.1) independently for all j=1, ... ,J

The risk factor and outcome are positively correlated due to confounding even
when the causal effect 0 is zero through the unmeasured confounder U. The genetic
variants are modelled as single nucleotide polymorphisms (SNPs) with a minor
allele frequency of 30%. A total of ] = 100 genetic variants are used in each analysis.
For each of Scenarios 2-4, we considered cases with 20, 40 and 60 invalid
instruments. For valid instruments, the &; and ; parameters were set to zero. For
invalid instruments, the «; parameters were either drawn from a uniform
distribution on the interval from — 0.1 to 0.1 (Scenario 2), or from 0 to 0.1
(Scenario 3), or set to zero (Scenario 4). The (; parameters were either set to zero
(Scenarios 2 and 3), or drawn from a uniform distribution on the interval from
— 0.1 to 0.1 (Scenario 4). The causal effect 6 was either set to 0 (no causal effect) or
+0.1 (positive causal effect). The y; parameters were drawn from a uniform
distribution on 0.03 to 0.1, meaning that the average value of the R? statistic for the
100 variants across simulated datasets was 9.3% (from 10.5 to 12.7% in Scenario 4)
corresponding to an average F statistic of 20.5 (from 23.3 to 28.9 in Scenario 4).

In total, 10,000 datasets were generated in each scenario. We considered a two-
sample setting in which genetic associations with the risk factor and outcome were
estimated on non-overlapping groups of 20,000 individuals. We compared
estimates from the proposed contamination mixture method with those from a
variety of methods: the standard IVW method, MR-Egger!® (both using random-
effects), the weighted median method!4, MR-PRESSO!7, and the mode-based
estimation (MBE) method of Hartwig et al.1®. To avoid extreme values in a
minority of analyses, we set ¥ = 1 in the contamination mixture method in all
analyses. Each of the methods was implemented using summarised data only.
Default values were used by the methods; in particular, the MBE method was
implemented using the weighted option with bandwidth ¢ = 1 under the no
measurement error (NOME) assumption (for similarity and thus comparability
with other methods), and the MR-PRESSO method was performed trimming
variants at a p-value threshold of 0.05 for the heterogeneity test.

For computational reasons (the methods took over 100 times longer to run than
the other methods put together), the MR-PRESSO and MBE methods were
performed on 1000 datasets per scenario only. Mean squared error was calculated
in each scenario by averaging across the 10,000 datasets (1000 datasets for the MR-
PRESSO and MBE methods).

Additional simulation scenarios. To assess how the contamination mixture
method performs with different degrees and directions of confounding, we repe-
ated the simulation study in Scenario 1 with all valid instruments varying the
parameters 8y and Jy in the equations below:

J
Xi:Zy]Gg+8XUi+€Xi (11)
=

I
Y=Y G+ 0X, + 8,U; + ey

=1
The original simulation study corresponds to 8y = dy = 1. We first took 8y = 1
and dy = +1 and considered a null causal effect 6 =0 and a positive causal effect
0= 0.1. To assess the validity of the method for providing appropriate inferences
and appropriately-sized confidence intervals with small samples (for the number of
instruments and the number of individuals), we simulated datasets with 10 genetic
variants that were valid instruments and a sample size of 5000 for the genetic
associations with the risk factor, and 5000 for the genetic associations with the
outcome. We also repeated the simulation study in Scenarios 1 to 4 with 40 invalid
instruments out of 100. We considered several values for the parameters (Jx, dy):
(1,1); (1, 0.5); (1, —0.5); (0.5, 1); and ( —0.5, 1). All other parameters were the same
as in the original simulation study. We performed 1000 simulations for each set of
parameters in each scenario.

Results are shown in Supplementary Tables 1 and 9. With 10 genetic variants
that are valid instruments, coverage under the null was no further from the
expected 95% level than would be expected by chance alone due to the limited
number of simulation replications. With 100 variants, differences between results
with different directions and degrees of confounding are somewhat predictable. In
Scenarios 1-3, estimates are more precise when there is less variability in the
outcome (Jy is smaller in magnitude). In Scenario 3, estimates are also less biased

in this case, as the pleiotropic effects remain constant in magnitude, and so
pleiotropic variants can be detected more easily. In Scenario 4, estimates are more
biased in this case, as the pleiotropic effects act via the confounder. Additionally in
Scenario 4, the direction of bias depends on the direction of confounding.
Otherwise, results are no more different between simulations than would be
expected by chance alone.

We also repeated the simulation study in Scenarios 2-4 with the genetic effects
on the risk factor y; drawn from a normal distribution with mean 0.065 and
standard deviation 0.02. Again, we performed 1000 simulations for each set of
parameters in each scenario. Results are shown in Supplementary Table 10.
Differences between results when genetic effects were drawn from a uniform and a
normal distribution were no more different than would be expected due to
chance alone.

Calculation of the posterior probability. The posterior probability of a genetic
variant being a valid instrumental variable can be calculated as:

o= ﬂOjL(Vﬁj)
V ﬂOjL(V1j> +(1- ”oj')L(FJ)

(12)

where 7; is the prior probability of being a valid instrument. We take 7, to be the
absolute value of the association of variant j with HDL-cholesterol in standard
deviation units. This ensures that variants having greater association with the risk
factor receive a higher prior weight. If the prior weights for all variants were equal,
then a variant having a weak association with the risk factor and an imprecise
association with the outcome that is compatible with multiple values of the causal
effect could receive the same posterior weight as a variant having a strong asso-
ciation with the risk factor and a precise association with the outcome that is
compatible with a far narrow range of values of the causal effect.

Although we could have used the {; parameters here, these are indicator
variables and only take the value zero or one. In contrast, the posterior probabilities
account for the value of the variant-specific causal estimate, its precision, and the
association of the variant with the risk factor. The combination of these factors is
useful in determining which variants have strong evidence for inclusion in a
particular subgroup.

Hypothesis-free search for predictors of subgroup membership. We consider
the subgroup of variants corresponding to the maximum of the likelihood function,
and use external data on genetic associations with traits in PhenoScanner to find
predictors of subgroup membership. As the external data were not used in
determining the subgroups, this can provide validation that the subgroup of var-
iants represents a real biological pathway. For each variant, we calculate the pos-
terior probability of being a valid instrument at the causal estimate. To avoid
spurious results, we filter the list of traits to include only traits having at least 6
variants associated at p < 107°. We also exclude traits that are major lipid fractions,
and filter out duplicates and highly-related traits. For each trait that remains, we
calculate the mean posterior probability for variants associated with the trait at p <
1075,

Colocalization for HDL-cholesterol associated variants. Multi-trait colocaliza-
tion was performed using the Hypothesis Prioritization Colocalization (HyPrCo-
loc) package (https://github.com/jrs95/hyprcoloc). This package performs multi-
trait colocalization in a similar way to moloc, the multi-trait extension to coloc?,
but in a computationally efficient way that allows colocalization of large numbers
of traits to be performed. We investigated colocalization between six traits: HDL-
cholesterol, triglycerides, CHD risk, mean corpuscular haemoglobin concentration,
platelet distribution width, and red cell distribution width. These blood cell traits
were selected as variants associated with these traits have the greatest mean pos-
terior probability of belonging to the largest group of variants identified by the
contamination mixture method (Supplementary Table 4). Associations with the
blood cell traits were estimated in 173,480 unrelated European-descent individuals
from the UK Biobank and INTERVAL studies*>. For each gene region, we took all
available variants from the relevant recombination window around the gene.
Colocalization was performed using default settings for the priors in the hyprcoloc
function (prior probability of initial trait association 0.0001, conditional probability
of subsequent trait having shared association 0.02), and with the uniform priors
setting as the default setting can be overly conservative.

While the exact pattern of colocalization differed between the gene regions,
colocalization between HDL-cholesterol, CHD risk, and at least one blood cell trait
was observed for 3 of the gene regions using the conservative priors, and for 7
regions using uniform priors (Supplementary Table 5). The posterior probability of
colocalization was at least 0.7 in all cases, except when using conservative priors in
the C5o0rf67 gene region. For this region, there was evidence of colocalization
between HDL-cholesterol, triglycerides, CHD risk, and mean corpuscular
haemoglobin concentration at posterior probability 0.59, and evidence of
colocalization between HDL-cholesterol, triglycerides, and mean corpuscular
haemoglobin concentration only (excluding CHD risk) at posterior probability
0.96. For the two gene regions that did not show evidence of colocalization between
these traits, one possible explanation is the presence of multiple causal variants
in the region; as the ATXN2 gene region reported colocalization between
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HDL-cholesterol and CHD risk, and separately between the blood cell traits. For
COBLLI, there was colocalization between HDL-cholesterol and the blood cell
traits, but not CHD risk.

As this investigation only uses publicly available summarised data on genetic
associations with traits and diseases, no specific ethical approval is required.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All the data used in this manuscript is publicly available and can be accessed using the
PhenoScanner tool at http://www.phenoscanner.medschl.cam.ac.uk/.

Code availability

Code for the contamination mixture method is presented in the Supplementary
Information and is implemented in the MendelianRandomization package (https://cran.
r-project.org/web/packages/MendelianRandomization/index.html).
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